Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate.

نویسندگان

  • Elina Chermnykh
  • Ekaterina Kalabusheva
  • Ekaterina Vorotelyak
چکیده

Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Laminin and Gelatin Extracellular Matrix on Short-Term Cultivation of Neonate Mouse Spermatogonial Stem Cells

Purpose: To compare the effect of laminin and gelatin on short-term culture of spermatogonial stem cells (SSCs) from neonatal mouse testes.Materials and Methods: Cell suspension containing SSCs were isolated from testes of 6 day-old mice and cultured in the presence of Glial-derived neuroterophic factor (GDNF), Epidermal Growth Factor (EGF) and Basic Fibroblastic Growth Factor (bFGF) on laminin...

متن کامل

Cardiogel as an Instructive Microenvironment for in vitro Differentiation of Bone Marrow- Derived Mesenchymal Stem Cells into Cardiomyocytes

Background: Stem cell therapy has been developed as an effective treatment method for the heart failure. Also, extracellular matrix has shown the positive effects in stem cell differentiation and myocardial tissue organization. Cardiogel is a native cardiac extracellular matrix (ECM) derived from cardiac fibroblasts. In the present study the role of cardiogel is examin...

متن کامل

The Effect of Cardio Gel and Matrigel on the Ultrastructure of Cardiomyocytes Derived From Mouse Embryonic Stem Cells

Purpose: To investigate the effect of cardiogel and matrigel on the ultrastructure of embryonic stem cell-derived cardiomyocytes. ECM: Extracellular Matrix derived from cardiac fibroblasts (cardiogel), commercial extracellular matrix (matrigel) and control group (without ECM) were cultured for up to 21 days. Ultrastructural properties of cardiomyocytes were evaluated by transmitting electron mi...

متن کامل

Decellularized kidney in the presence of chondroitin sulfate as a natural 3D scaffold for stem cells

Objective(s): Use of biological scaffolds and automating the cells directing process with materials such as growth factors and glycosaminoglycans (GAGs) in a certain path may have beneficial effects in tissue engineering and regenerative medicine in future. In this research, chondroitin sulfate sodium was used for impregnation of the scaffolds. It is a critical component in extracellular matrix...

متن کامل

YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate

How the behaviour of somatic stem cells (SCs) is influenced by mechanical signals remains a black-box in cell biology. Here we show that YAP/TAZ regulation by cell shape and rigidity of the extracellular matrix (ECM) dictates a pivotal SC decision: to remain undifferentiated and grow, or to activate a terminal differentiation programme. Notably, mechano-activation of YAP/TAZ promotes epidermal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular sciences

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 2018